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Circularly Symmetric Optical Waveguide
with Strong Anisotropy

ANDREAS TONNING, SENIOR MEMBER, IEEE

Abstract — A solution to the problem of wave propagation in an aniso-
tropic, circularly symmetric optical waveguide is presented. Exact solutions
are given for the step-index case when the core and the cladding consist of
uniaxial materials with their optical axes parallel with the axis of the
cylindrical waveguide.

I. INTRODUCTION

ITH THE considerable efforts that are currently

being made of making single crystal optical fibers,
there is a need of knowing the mode structure of dielectric
guides consisting of anisotropic materials. However, find-
ing the modes in an anisotropic medium with a cylindrical
boundary is, in general, a complicated problem. This is so
because the translational symmetry of a crystal does not
naturally lend itself to a simple description in terms of the
cylindrical coordinates required by the boundary condi-
tions. Approximate solutions have been given for cases of
weak anisotropy caused by elastic deformations or thermo-
elastic stresses of a medium which is isotropic in its unde-
formed state [1]. The purpose here is to discuss and solve
the simplest case of strong anisotropy appearing in a guide
consisting of monocrystalline media. The simplest case is,
no doubt, that of a uniaxial medium with the optical axis
coinciding with the cylinder axis. It will be shown that in
this case a step-index circular waveguide having aniso-
tropic materials for core and cladding has modes that are
simple generalizations of those for the isotropic waveguide.
As a numerical example, solutions for the lowest order
modes of a lithium niobate waveguide are given.

II. FORMULATION OF THE PROBLEM

When the optical axis of a uniaxial material is taken to
be the z axis, the nonzero components of the dielectric
tensor are

€, =€on’
€,, = €on’
(1)

Here, fis a factor determining the degree of anisotropy, the

€., = €sznz‘
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isotropic case corresponding to f =1.
Consider a cylindrical waveguide with a stepwise change
of refractive index at radius

(2)
The z axis is the axis of the cylinder. Suppose that the core

of the waveguide, the region defined by
r<a,

r=a.

has optical properties as given by (1). Outside this region is
the cladding with optical properties given by

—_ 2
€xx — €3

€,, = €n; (r>ay,).

(3)
€= €8 Zn%
Introducing now the cylindrical coordinate system
(r,0,z)

we may write the relation between the components of D
and E in the cladding as

Dr _ 2 Er
Dﬂ — o EG

Dz:gzngeoEz' (4)

Maxwell’s equations for monochromatic fields of angu-
lar frequency w are

VXE+ jougH=0
VX H— joD=0.
We attempt to find solutions for the fields in the form
F(,.)e/(va#h)

(5)

(6)
where
v=0,x1,%2,---

and F represents any of the field vectors E, D, and H. B is
the constant of propagation. When the curls are expressed
in terms of cylindrical coordinates, (5) is seen to be equiva-
lent to six scalar equations, of which four are differential
equations of first order, while the remaining two are alge-
braic equations. The latter may be used to eliminate E, and
H, from the differential equations. We are then left with
four coupled first-order equations in the variables E,, E,,
Hy, and H,.
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For the isotropic case it has been shown: [2] to be
advantageous to introduce as vector variable

sEq / zZy/?
E,/Zy/*
w(s)= 12 (7)
\ sHyZ,;
H,7y?
where
1/2
Zoz(:“o/eo) / (8)
s is the normalized radius
s=rky= r% 9)

and c is the velocity of light in vacuum.
The set of coupled differential equations may then be
written

d _
EEW(S) Mw(s)=0 (10)
where the system matrix M is given by
0 0
M= J 0 0
s —vb —(v? — g2n3s?
— (n% - b2) vb

Here, b is the normalized constant of propagation
b=B/k,.
From the two algebraic equations resulting from (5), the
radial components may be expressed in terms of w(s)
E /7172 . 2 2
./ 2y _| 0 0 b/n5 v/snj w(s).

HZ)* -b —v/s O 0

(12)

The system matrix M has here, as in the isotropic case [2],
the symmetry property

oMo = — M*

(13)

where

_ (14)

1
The dots stand for 0, M is the transpose of M, and the star
denotes the complex conjugate. As shown in detail in [2],

this property of M leads to the result that for any two
solutions of (10), say wy(s) and w,(s), we have

(15)
To obtain the equations corresponding to (11) and (12)

for the core region we replace n, and g by n and f,
respectively.

wi(s)ow,(s) = const.
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III. SOLUTION OF THE DIFFERENTIAL EQUATION

The equation (10) always has four independent vector
solutions. Although the equation is valid when n, and g are
arbitrary functions of s, we shall here confine discussion to
the case of n, and g being constant, and show that solu-
tions of (1) may then be obtained from those of the
isotropic waveguide.

The system matrix for the isotropic case is obtained from
(11) when the factor of anisotropy g is given the value 1.
Let us denote the system matrix obtained in this way by

(16)

The differential equation for the isotropic case then is

—d~v—M,v=O.

p (17)

Its solutions are well known and were first derived by
Snitzer [3].
‘Let us first assume

b>n, (18)
vb/n} (v2 = n2s?)/n’
(i)t -/ o
0 0
0 0

and introduce
p:(bz_n%)l/z (19)

which is then a real quantity. There are two independent
solutions of (17) that are regular at s = c0. These are [2]

. vb ] o,
—J > K.(ps) JsK;(ps)
2P 0
P
()= FpKdes) | e()=] rhye ).
p 14
—n,5K;(ps) — oK, (ps)
L 0 ] ’
(20)

Here, K, is the modified Bessel function of second kind
and order ». We note that the two solutions (2) are E-waves
and H-waves, respectively.

To find the solutions for the anisotropic case we first
note that since v,(s) satisfies (17) we have

(21)

Only one of M,;’s elements is different from the corre-
sponding element of M, namely, the element in line 3 and
column 2. However, the right-hand side of (21) is seen to
be independent of this element, because the second of v,’s
components is zero. Therefore, (21) remains valid if we

d
s 0,(s)= M;(s)v,(s).
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exchange M; for M
d
£ ey(s)=M(s)us(s).

This shows that v,(s) is a solution of (10). The H-wave,
having no axial electric field component, is obviously not
affected by the type of anisotropy discussed here.

Turning now to the function v,(s), we know that it
satisfies the differential equation

v,(gs) =M, (gs)v,(gs).

(22)

d

—= (23)
d(gs)
This slightly modified version of (17) is obtained by change
of the dependent variable from s to gs. Since g is a
constant, this amounts to a change of scale in the indepen-
dent variable. The latter equation may also be written

% v,(gs) = gM,(gs)o(g5)- (24)

It is easily seen that the elements of

gM;(gs)
equal those of M(s) with one exception: the element of line
1 and column 4. However, the right-hand side of (24) does
not depend on this element, due to the fact that the fourth
component of v|(s) is zero. Equation (24), therefore, re-
mains valid if the system matrix

gM;(gs)
is replaced by M{(s). We then have
d
£ oi(g5) = M(5)o(g5)

which shows that v,(gs) is a solution of (10).
To sum up, we have shown that two solutions of (10),
regular at s =co, are

(25)

o 1

. vb -
—J > K.(psg) JsK;(ps)

20 0

(5)=| Ji-K.(pgs) uy(s)=| vb
us)= n, 2 ‘P—KV(PS)
—n,85K;(pgs) —pK,(ps)
0 |
(26)

with p given by (19). The above solutions are relevant for
the cladding of a step-index anisotropic waveguide since
they are regular at infinity.

Two other solutions are found from (26) when K, is
replaced by I,, the modified Bessel function of first kind
and order »

i vb
~——1,(pgs) —sL;(ps)
2P 0
uy(s)=| — 2 L(ogs) u(s)=| vb
n, I I(ps)
——jnzgsly’(pgs) —ij(,OS)
| 0 l ’

(27)
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The functions (26) and (27) together form a complete set
of solutions of (10) and satisfy the orthogonality conditions

#rou, = { L if (i )= (13)or (24) (5

' 0, otherwise.

These relations are a consequence of the symmetry prop-
erty (13). To see that (28) is correct, we note on one hand
that, according to (15), each of these products is a con-
stant. Its value is most easily found by evaluation of the
limit of the products for s =0 or s = oc.

The solutions for the core region may now be obtained
from the ones discussed above, exchanging n, and g for n
and f. We also introduce

y=(n?—p)""? (29)

assuming y to be real. Comparing this with (19), we
observe that p corresponds to jy. In order to transform (27)
into a set of solutions valid for the core region we must
accordingly replace p by jy.

The modified Bessel functions with imaginary argument
may now be replaced by ordinary Bessel functions with
real argument [4]. The relation between these functions
may be written

L(jz)=(=1)"""j"(2), (30)
For a material with index » and anisotropy factor f (in-
stead of n, and g) we obtain from (27) the two solutions

vbJ,(vf5) —vsJ)(vs)
_ YI(vfs) _ 0
MO ey | T )
0 JY(rs)
(31)

w,(s) and w,(s) are regular at s =0 and any vector repre-
senting the fields in the core region must be a linear
combination of these two functions.

IV. Tue GUIDED MODES

Let us introduce the normalized core radius
w

aZkOaOZFaO. (32)
The field in the core may be written
w(s)=apw(s)taym(s), s<a. (33)

In the cladding, any solution of (10) may be written as a
linear combination of u,(s),...,u4(s). However, the fields
must tend to zero at infinity and, therefore, the coefficients
of expansion of u,(s) and u,(s) must be zero. This condi-
tion together with the boundary condition at s =0 and the
orthogonality relations (28) lead to

at(a)ow(a) at(a)ow(a) ( g
@i(a)ow(a) af(a)ow(a) |\
Requiring now the determinant of (34) to be zero, we

obtain the dispersion relation which determines the nor-
malized constant of propagation b. This form of the rela-

J=0. (9
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tion is well suited for computational purposes. For the
purpose of carrying out an analytical discussion we insert
for the functions # and w from (26) and (31) and obtain

[€f2 A Jyfa) 1 K;(pga)]
vfa J(yfa) ° pga K,(pga)

. [_1_ J(va) 1 Kj(pa) ] :[

va J(ya) = pa K,(pa)

Vb n2
—(e—1>]
.Y2p2 a2

(35)

2

Here we have put

[

(36)

E:

S |x
(SN

This is obviously a generalization of the well-known rela-
tion for isotropic step-index waveguides. Schiesinger,
Diament, and Vigants [5] have shown how to recast the
equation to a form more suitable for discussing the cutoff
frequencies of the modes. Following the example of these
authors and using, as far as possible.,, their notation, we
introduce

ipy= 1 hii(2) - 1J,_4(2)
J (Z)——Z— J,,(Z) ()*—Z— J,,(Z)
COsPHE rosiEs o

When the derivatives in (35) are eliminated by means of
L =3(J,_1— J41)
and
K;: _%(KV—1+KV+1) (38)
(see [4]), the left-hand side of (35) may obviously be
expressed in terms of the functions defined above. In [5] it
is shown that when use is made of the recursion formulas
for Bessel functions this may be done also for the right-hand

side. Following a similar procedure, we find for the disper-
sion relation

[ef2~(vfa)— &K (pga)][J* (va)+ K* (pa)]
+[ef Tt (vfa)+ 82K (pga)|[ /™ (va)— K~ (pa)] =0.
(39)

A. Cutoff Conditions

The above equation is well suited for analyzing the
cutoff conditions for the various modes. At cutoff, p will
tend to zero

p—0.
It follows from (19) that
b-n, (40)
and from (29) that
v=v.=(n*—n3)""% (41)
From the properties of Bessel functions for small argu-
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ments [4] it follows that when z > 0 we have
1
*‘T—z, forv=20
K (z) - z’lnz/
2y .
> forv>0
Lz
——1 fors=0
z’Inz/2
K (z)-< ~Inz/2, forv=1 (42)
1
—_ forv>1.
2—1) VT

Let us now consider the forms taken by (39) for various

values of ».

Case 1. v=0: From elementary properties of Bessel
functions it follows that in this case

J (z)=—J"(z2)
K (z2)=K"(z). (43)
This simplifies the dispersion relation (39) to
[ef7* (vfa)+ 8°K* (pga)][ /¥ (ya) + K* (pa)] = 0.
(44)
When p — 0 it is seen from (42) that K" (pga) and K™ (pa) .

both tend to infinity. In order to satisfy (44) we must have
either

Jo(v.a)=0  (H,,, -modes) (45)

which determines the cutoff radii (and cutoff frequencies)
of the H,,, -modes, or, we must have

‘ Jo(y.fa)=0  (E,,, -modes). (46)

Case 2. v=1: When use is made of (42) it is seen that
for p — 0 the dominant term in (39) is

2
2/(pa)’.

In order that the equation be satisfied it is necessary that

the coefficient of this term is zero, i.e.

g (ya)+ gzln%‘l +efJ (vfa)+ gzlinga =0.

(47)
This leads to
Ji(v,a)=0  (HE,,, -modes) (48)
Ji(v.fa)=0, a+#0  (EH,, -modes). (49)
Case 3. v>1: Now the dominant term in (39) is
2v/(pa)’.

Requiring that its coefficient be zero, we obtain

S o)+ )= s (60)

When these results are compared with those for an
isotropic circular waveguide [5] and [6], we note that for
the lowest order modes the cutoff frequencies of the E,,,
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Fig. 1. Constant of propagation for the HE,,- and E;-modes of an
anisotropic waveguide as a function of core radius. The Hg;-mode has
cutoff radius 7.99 and its curve is too close to that of the Egj-mode to
be plotted.

and EH,,-modes are changed by anisotropy whereas the
cutoff frequencies of the H,, and HE,,, are not influenced.
For the modes of higher order, the equation determining
the cutoff frequencies (50), is considerably more com-
plicated than in the isotropic case and involves the aniso-
tropy factors of core and cladding.

In Fig. 1 is shown as an example the constant of
propagation for two modes in a guide with a core of
lithium-niobate.

V. COMMENTS AND CONCLUSION

The above discussion has been confined to what appears
to be a very special case of an anisotropic waveguide. Only
the step-index case has been treated and the assumption
that the optical axis of both materials afe parallel with the
cylinder axis is evidently rather restrictive.

If we keep the assumption that the dielectric tensor has
the form shown in (1), it is not difficult to extend the
results obtained here to cover also the graded-index case,
i.e., to let n and f in (1) be arbitrary functions of the
distance from the axis. Yeh and Lindgren [7] have shown
for the isotropic waveguide how the continuous variation
- of the index may be approximated by one which is piece-
wise constant. This allows the use of well-known solutions
for the step-index case and appears to lead to efficient
computational procédures. It is certainly possible to adapt
this method to the anisotropic waveguide of the type
discussed here and to the formalism used in this discussion.

If the simple anisotropy shown in (1) is replaced by a
general anisotropy we meet the difficulty that the dielectric
tensor, when converted to cylindrical coordinates, will have

components that are periodic functions of the angle 6. If *
we, however, take the average value of the tensor with
respect to the angle, we obtain a tensor of the form shown
in (1) which may, accordingly, also be regarded as the first
approximation to a more general type of anisotropy.
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