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Circularly Symmetric Optical Waveguide
with Strong Anisotropy

ANDREAS TONNING, SENIOR MEMBER, IEEE

,4 bstract —A solution to the problem of wave propagation in an aniso-

tropic, circularly symmetric optical wavegoide is presented. Exact solutions

are given for the step-index case when the core and the cladding consist of

uniaxial materiafs with their optical axes paraflel with the axis of the

cylindrical wavegoide.

I. INTRODUCTION

w ITH THE considerable efforts that are currently

being made of making single crystal optical fibers,

there is a need of knowing the mode structure of dielectric

guides consisting of anisotropic materials. However, find-

ing the modes in an anisotropic medium with a cylindrical

boundary is, in general, a complicated problem. This is so

because the translational symmetry of a crystal does not

naturally lend itself to a simple description in terms of the

cylindrical coordinates required by the boundary condi-

tions. Approximate solutions have been given for cases of

weak anisotropy caused by elastic deformations or thermo-

plastic stresses of a medium which is isotropic in its unde-

formed state [1]. The purpose here is to discuss and solve

the simplest case of strong anisotropy appearing in a guide

consisting of monocrystalline media. The simplest case is,

no doubt, that of a uniaxial medium with the optical axis

coinciding with the cylinder axis. It will be shown that in

this case a step-index circular waveguide having aniso-

tropic materials for core and cladding has modes that are

simple generalizations of those for the isotropic waveguide.

As a numerical example, solutions for the lowest order

modes of a lithium niobate waveguide are given.

II. FORMULATION OF THE PROBLEM

When the optical axis of a uniaxial material is taken to

be the z axis, the nonzero components of the dielectric

tensor are

c = con 2
xx

Evy = Coil*

c Zz =cof2n2. (1)

Here, f is a factor determining the degree of anisotropy, the
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isotropic case corresponding to f = 1.

Consider a cylindrical waveguide with a stepwise change

of refractive index at radius

~=ao. (2)

The z axis is the axis of the cylinder. Suppose that the core

of the waveguide, the region defined by

r<ao

has optical properties as given by (l). Outside this region is

the cladding with optical properties given by

cx .Y = con;

t
YY

=con~

1

(r>ao). (3)

cZz = 6og2n;

Introducing now the cylindrical coordinate system

(r, d,z)

we may write the relation between the components of D

and E in the cladding as

D2=g2n~co EZ. (4)

Maxwell’s equations for monochromatic fields of angu-

lar frequency u are

VXE+jwpoH=O

VXH–juD=O. (5)

We attempt to find solutions for the fields in the form

F(r)eJIve–@zj (6)

where

~=(), *l, &2,...

and F represents any of the field vectors E, D, and H. j3 is

the constant of propagation. When the curls are expressed

in terms of cylindrical coordinates, (5) is seen to be equiva-

lent to six scalar equations, of which four are differential

equations of first order, while the remaining two are alge-

braic equations. The latter may be used to eliminate E, and
H, from the differential equations. We are then left with

four coupled first-order equations in the variables E@, Ez,

HO, and Hz.
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For the isotropic case it has been shown

advantageous to introduce as vector variable

w(s) =

where

Z.= (po/qJ”2
s is the normalized radius

s=rkO=r~

and c is the velocity of light in vacuum.

The set of coupled differential equations

written

$v(s)–imv(s)=o

where the system matrix J4 is given by

~=.j

791

[2] to be III. SOLUTION OF THE DIFFERENTIAL EQUATION

(7

.The equation (10) always has four independent vector

solutions. Although the equation is valid when n= and g are

arbitrary functions of J, we shall here confine discussion to

the case of n= and g being constant, and show that solu-

tions of (1) may then be obtained from those of the

o

0

‘1 —vb —

isotropic waveguide.

The system matrix for the isotropic case is obtained from

(11) when the factor of anisotropy g is given the value 1.

(8)
Let us denote the system matrix obtained in this way by

n41=Mg=,. (16)

(9) The differential equation for the isotropic case then is

d’
Y O—iklrv=o. (17)

may then be us

Its solutions are well known and were first derived by

(lo)
Snitzer [3].

Let us first assume

b>n= (18)

-(v2-g2n~s2)

\ +-b=) J’b

Here, b is the normalized constant of propagation

b = /3/k0.

From the two algebraic equations resulting from (5), the

radial components may be expressed in terms of w(s)

(12)

The system matrix M has here, as in the isotropic case [2],

the symmetry property

~~~ . — M* (13)

where

‘=[1:1:11, ’14)

The dots stand for O, fi is the transpose of M, and the star

denotes the complex conjugate. As shown in detail in [2],

this property of M leads to the result that for any two

solutions of (10), say W,(S) and W2(,S),we have

fi~(,s)uw=(,s )=const. (15)

To obtain the equations corresponding to (11) and (12)

for the core region we replace n= and g by n and ~,

respectively.

o 0 1“
(11)

o 0 I

and introduce

~=(b2–n; )’/2 (19)

which is then a real quantity. There are two independent

solutions of (17) that are regular ats = m. These are [2]

1/
‘j %.(p)

n=p

v,(s) = j-&~v(w)

– n2,sK~(ps)

o

Here, K,, is the modified Bessel

,11
jsKJ(ps)

o

‘2(S) = $K,(ps) “

–pKV(ps)

(20)

function of second kind

and order v. We note that the two solutions (2) are E-waves

and H-waves, respectively.

To find the solutions for the anisotropic case we first

note that since V=(S) satisfies (17) we have

$V2(S)=MI(S)V2(S). (21)

Only one of MI’s elements is different from the corre-

sponding element of M, namely, the element in line 3 and

column 2. However, the right-hand side of (21) is seen to

be independent of this element, because the second of V2’S

components is zero. Therefore, (21) remains valid if we
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exchange Mr for M

jv2(s)=M(s)02(s). (22)

This shows that oJ$ ) is a solution of (10). The H-wave,

having no axial electric field component, is obviously not

affected by the type of anisotropy discussed here.

Turning now to the function q(s), we know that it

satisfies the differential equation

d
—ol(gs) =MI(gs)ol(gs).
d(gs)

(23)

This slightly modified version of (17) is obtained by change

of the dependent variable from s to gs. Since g is a

constant, this amounts to a change of scale in the indepen-

dent variable. The latter equation may also be written

d
~ ~l(gs) ‘gM~(g~)ol(gs). (24)

It is easily seen that the elements of

g~r( W)

equal those of M(s ) with one exception: the element of line

1 and column 4. However, the right-hand side of (24) does

not depend on this element, due to the fact that the fourth

component of Ol(s ) is zero. Equation (24), therefore, re-

mains valid if the system matrix

@’fI ( ‘@ )

is replaced by M(,s ). We then have

&l(gs)=M(s)ol(gs) (25)

which shows that ol(gs ) is a solution of (10).

To sum up, we have shown that two solutions of (10),

regular ats = m, are

u,(s)=

‘j +Jqpsg)

j&K(Pg~) U2(S) =

jsK~(ps)

o 1

+KV(ps)

– pKv(ps) ~

(26)

with p given by (19). The above solutions are relevant for

the cladding of a step-index anisotropic waveguide since

they are regular at infinity.

Two other solutions are found from (26) when K. is

replaced by IV, the modified Bessel function of first kind

and order v

%(PdU3(S)= – ~2

[

vb
—J,(pgs)
n2P

Ill

–sI;(ps)

o

U4(.S) =
j~lu(ps) “

– jp~.(ps)

The functions (26) and (27) together form a complete set

of solutions of ( 10) and satisfy the orthogonality conditions

ii:ml, =
(

1, if (2, j)=(l,3) or(2.4)

O, otherwise.
(28)

These relations are a consequence of the symmetry prop-

ert y (13). To see that (28) is correct, we note on one hand

that, according to (15), each of these products is a con-

stant. Its value is most easily found by evaluation of the

limit of the products fors = O ors = cc.

The solutions for the core region may now be obtained

from the ones discussed above, exchanging n ~ and g for n

and ~. We also introduce

~=(n2–~2)lV2 (29)

assuming y to be real. Comparing this with (19), we

observe that p corresponds to jy. In order to transform (27)

into a set of solutions valid for the core region we must

accordingly replace p by jy.

The modified Bessel functions with imaginary argument

may now be replaced by ordinary Bessel functions with

real argument [4]. The relation between these functions

may be written

I,(jz)=(–l)’+’j”.iv(z). (30)

For a material with index n and anisotropy factor f (in-

stead of n 1 and g) we obtain from (27) the two solutions

[ Vb.lu(yfs ) 1 ~ -YsJj(YS) 1

(31)

W,(S) and W2(S) are regular at s = O and any vector repre-

senting the fields in the core region must be a linear

combination of these two functions.

IV. THE GUIDED MODES

Let us introduce the normalized core radius

@
a=koao=~ao. (32)

The field in the core may be written

w(s) =aEw, (s)+ aHw2(s), s7a. (33)

In the cladding, any solution of (10) may be written as a

linear combination of u,(s),..., Uo(s). However, the fields

must tend to zero at infinity and, therefore, the coefficients

of expansion of us(s) and Ud(s) must be zero. This condi-

tion together with the boundary condition ats = O and the

orthogonality relations (28) lead to

( ]( )

ii~(a)uwl(a) ti~(a)crw2(a) a~
= o. (34)

ti~(a)uwl(a) ti~(a)aw2(a) a~

Requiring now the determinant of (34) to be zero, we

obtain the dispersion relation which determines the nor-

malized constant of m-o~aszation b. This form of the rela-(27) --------- . . . . . . ,. , “
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tion is well suited for computational purposes. For the ments [4] it follows that when z -0 we have

purpose of carrying out an analytical discussion we insert

for the functions u and w from (26) and (31) and obtain’

I

1— forv=O

[

z21nz/2’

~~2~ J’(7~a) 1 K~(pga)

1

K+(z)+
~+g2— 2V

y~a JV(yfa ) Pga ~Jpga) >’ forv>O

793

[

. 1 Uw) +1 K(w)

1[ 1

_ ab(c-q 2.
w L(w) W K.(pa) – y2p2 a’

I

1— forv=O

(35)
z21nz/2 ‘

K-(z)+ –lnz/2, forv=l (42)

Here we have put 1
forv>l.

t.?’
(36)

2(V–1) ‘
~=—.

n; Let us now consider the forms taken by (39) for various

This is obviously a generalization of the well-known rela- values of v.

tion for isotropic step-index waveguides. Schlesinger, Case 1. v =0: From elementary properties of Bessel

Diament, and Vigants [5] have shown how to recast the functions it follows that in this case

equation to a form more suitable for discussing the cutoff

frequencies of the modes. Followinz the examrde of these
J-(z)= –J+(z) !

authors and using, as far

introduce

,
as possible., their notation, we K-(z) =K+(z). (43)

This simplifies the dispersion relation (39) to

~-(z)=&(z)
[~.f2J+(Y~a)+g2K+ (pga)][J+(ya)+K+ (pa)] =0.

z Jv(z)
(44)

~-(z)=~%l(z)
(37) When p+ O it is seen from (42) that K+(pga) and K+(pa)

z K“(z) “
both tend to infinity. In order to satisfy (44) we must have

When the derivatives in (35) are eliminated by means of either

.J;=+(J,-, -J,+,) JO(yca) = o (HO~ -modes) (45)

and which determines the cutoff radii (and cutoff frequencies)

K;= -+(li-, +lcv+l) (38)
of the HO~ -modes, or, we must have

(see [4]), the left-hand side of (35) may obviously be ‘
JO(yCfa) = O (EO~ -modes). (46)

expressed in terms of the functions defined above. In [5] it Case 2. v =1: When use is made of (42) it is seen that

is shown that when use is made of the recursion formulas for p + O the dominant term in (39) is

for Bessel functions this may be done also for the right-hand

side. Following a similar procedure, we find for the disper-
2/(pa)2.

sion relation In order that the equation be satisfied it is necessary that

[t.f2J-(yfa)-g2K- (pga)][.l+(ya)+ IC+(pa)]

the coefficient of this term is zero, i.e.

+[cf2J+(yjiz) +g2K+(pga)] [J-(ya)-~-(pa)] =0.
g2J-(ya)+ g21n~+c~2J- (y~a)+g21n~ =0.

(39)
This leads to

(47)

A. Cutoff Conditions J1(yca) = o (HE,m -modes) (48)

The above equation is well suited for analyzing the J1(ycfa)=O, a # O (EH,~ -modes). (49)
cutoff conditions for the various modes. At cutoff, p will

tend to zero
Case 3. v >1: Now the dominant term in (39) is

p+o. 2v/(pa)2.

It follows from (19) that Requiring that its coefficient be zero, we obtain

b+n2

and from (29) that

(40)

Y+ Yc=(n2-n;)”2. (41)
When these results are compared with those for an

isotropic circular waveguide [5] and [6], we note that for

From the properties of Bessel functions for small argu- the lowest order modes the cutoff frequencies of the EO~l
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Fig. 1. Constant of propagation for the HE,, - and Eel-modes of an
anisotropic wsweguide as a function of core radius. The Ho] -mode has
cutoff radius 7.99 and its curve is too close to that of the Eel-mode to
be plotted.

and EH ~~-modes are changed by anisotropy whereas the

cutoff frequencies of the HOn and HE, ~ are not influenced.

For the modes of higher order, the equation determining

the cutoff frequencies (50), is considerably more com-

plicated than in the isotropic case and involves the aniso-

tropy factors of core and cladding.

In Fig. 1 is shown as an example the constant of

propagation for two modes in a guide with a core of

lithium-niobate.

V. COMMENTS AND CONCLUSION

The above discussion has been confined to what appears

to be a very special case of an anisotropic waveguide. Only

the step-index case has been treated and the assumption

that the optical axis of both materials are parallel with the

cylinder axis is evidently rather restrictive.

If we keep the assumption that the dielectric tensor has

the form shown in (l), it is not difficult to extend the

results obtained here to cover also the graded-index case,

i.e., to let n and ~ itt (1) be arbitrary functions of the

distance from the axis. Yeh and Lindgren [7] have shown

for the isotropic waveguide how the continuous variation

of the index may be approximated by one which is piece-

wise constant. This allows the use of well-known solutions

for the step-index case and appears to lead to efficient

computational procedures. It is certainly possible to adapt

this method to the anisotropic waveguide of the type

discussed here and to the formalism used in this discussion.

If the simple anisotropy shown in (1) is replaced by a

general anisotropy we meet the difficulty that the dielectric

tensor, when converted to cylindrical coordinates, will have

components that are periodic functions of the angle 6. If

we, however, take the average value of the tensor with

respect to the angle, we obtain a tensor of the form shown

in (1) which may, accordingly, also be regarded as the first

approximation to a more general type of anisotropy.
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